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Abstract:  The drive power equation for a resonant cavity with two coupled ports is
reviewed.  Some fundamental properties of this equation on resonance are discussed.  In
particular when one desires a loaded quality factor much lower than the unloaded
quality factor of the cavity, the drive power is minimized when one chooses to overcouple
the drive port to the cavity.

Introduction

The forward drive power required to maintain a certain amount of steady-state stored
energy on resonance within a cavity with two externally coupled ports is given as
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where FWDP  is the power associated with the forward wave on the input transmission line
of the driven port 1, 1� and 2�  are the coupling coefficients of the coupler / cavity
interface at ports 1 and 2 respectively, o�  is the radian resonant frequency, cavU  is the
energy stored in the cavity in steady state, and oQ  is the unloaded quality factor of the
cavity.  The derivation of this equation is explained in Appendix A.

The well-known facts that the forward power decreases with increasing oQ  and that the
forward power is minimized by choosing 1 1� �  and 2 0� �  are seen from Eq. 1 and its
first and second derivatives with respect to 1� .  With 1 1� �  the loaded quality factor, LQ ,

would be equal to 1
2 oQ .

The above statements may seem trivial, but what if it is impractical to operate with
1
2L oQ Q�  ?  This situation arises with superconducting cavities whose oQ  values can

reach the 1010 range.  A high oQ  may minimize cavity losses but becomes a nuisance
when one considers perturbations to the resonant frequency caused by microphonics and
Lorentz-force detuning.  At a resonant frequency of 4GHz, the loaded 3dB bandwidth of
a unity coupled cavity with 101 10oQ � �  is only 0.8 Hz.  To control the cavity energy and
amplitude in the presence of disturbances with such a low bandwidth is a difficult task.
Thus, one considers operating at lower values of LQ .
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Lowering QL

The loaded quality factor for a cavity with two coupled ports can be expressed1 as
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LQ  can be lowered by decreasing oQ , increasing 1� , increasing 2� , or any combination
of these three.  Regardless of how a lower LQ  is achieved, the following expression
results from substituting Eq. 2 into Eq. 1,
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If one is interested in minimizing FWDP  for a particular LQ , Eq. 3 recommends making

2 0� �  and making 1�  as large as possible, while still satisfying Eq. 2 of course.  When
one desires LQ  << oQ  with 2 0� � , by Eq. 2 1�  >> 1.  Thus FWDP  approaches its

asymptotic value of  1
4

o cav

L

U
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�  .

The choice of lowering LQ  by decreasing oQ  does not minimize FWDP .  From Eq. 2 any
decrease in oQ  will necessitate a decrease in 1�  to achieve the same LQ .  The first

derivative of Eq. 3 says that 
1

0FWDP
�

�
�

�
.  Any decrease in 1�  would only increase FWDP

for the same LQ .

Thus, when one wishes to operate with a LQ  that is lower than ½ of an achievable oQ ,
the required forward drive power is minimized by choosing to overcouple the drive port
rather than either loading the cavity with a second port or decreasing oQ  with a more
lossy cavity material.

                                                          
1 see C.G. Montgomery, R.H. Dicke, E.M. Purcell, “Principles of Microwave Circuits”, McGraw-Hill Book
Co., 1948, Chapter 7.
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Conclusion

It has been shown that the required forward power to drive a resonant cavity that has an
unloaded Q much higher than the desired operating loaded Q is minimized by choosing to
overcouple the input port.  This is commonly seen in superconducting practice and may
not be anything new to many.  However it is seldom explained that this is the optimal
way (in terms of drive power requirements) of achieving a practical loaded Q.  This
practice can be applied to any resonant cavity.  It is not restricted to the superconducting
case.  The overcoupled case takes advantage of the increase in the voltage at the end of
the transmission line caused by the reflected wave.  Of course to protect the source one
needs to use a circulator.  This certainly is not impractical especially at higher
frequencies where dimensions of circulators are small.
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Appendix A – Derivation of the Drive Power Requirement Equations

An equivalent circuit model1 representing a cavity with two coupled ports is shown in
Figure 1.  Port 1 with characteristic impedance Zo1 is coupled to the cavity through a
transformer with turns ratio N1.  Port 2 with characteristic impedance Zo2 is coupled to
the cavity through a transformer with turns ratio N2.  The cavity resonant mode of
interest is modeled with a parallel RLC circuit.  The system is driven by a source located
on port 1.

Figure 1: Cavity with Two-Coupled Ports

The cavity impedance can be written as:
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where R is the equivalent shunt impedance of the cavity, Qo, is the unloaded quality
factor of the cavity, � is the drive frequency, and �o is the resonant frequency of the
cavity.

The coupling coefficients, �1 and �2 are defined1 as,
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where Qext1 and Qext2 are the external quality factors of ports 1 and 2 respectively.

                                                          
1 This model is commonly used to describe a cavity coupled to a transmission line. A discussion of this
model can be found in E.L. Ginzton, “Microwave Measurements”, McGraw-Hill Book Co., 1957, Library
of Congress Catalog Number 56-13393, pp. 391-397. For the development of the model see C.G.
Montgomery, R.H. Dicke, E.M. Purcell, “Principles of Microwave Circuits”, McGraw-Hill Book Co.,
1948, Chapter 7.



5

Port 2 can be transformed into the cavity as shown in Fig. 2.

Figure 2: Cavity System showing Port 2 transformed into the Cavity

Similarly, the total impedance within the cavity can be transformed onto the input
transmission line of port 1 as shown in Fig. 3.

Figure 3: Cavity System showing all impedances reflected onto the Input T-Line

The impedance presented to the input transmission line can be expressed as
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On resonance ( o� �� ) , the load impedance presented to the transmission line is simply

� �
1

1
21 oZ�

��

.  Thus, the reflection coefficient2, �L , on resonance at the cavity end of the

input transmission line can be expressed as
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In steady-state, the difference between the forward and reflected powers is equal to the
power delivered to the cavity and to port 2.  This is expressed as,

� �2
21FWD L cav ZoP P P� � � � �  ,

where PFWD is the power associated with the forward wave on the input transmission line,
Pcav is the power associated with cavity losses, and PZo2 is the power delivered to the load
in port 2.  The power in the cavity and in the load of port 2 can be expressed in terms of
the stored cavity energy, cavU , and the quality factors oQ  and 2extQ  as follows,
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The sum of these two powers can be expressed as,
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where use of the relation 2
2

o

ext

Q
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� �  was used.  Thus to maintain a certain steady-state

cavity stored energy, the required forward power is
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2 For a discussion of reflection coefficient and transmission line concepts see G. Gonzalez, “Microwave
Transistor Amplifiers”, Prentice-Hall, Engelwood Cliffs, 1984, Chapter 1.




